ISOTACHOPHORETIC DETERMINATION OF MOBILITY AND p K_{a} BY MEANS OF COMPUTER SIMULATION

IV. EVALUATION OF m_{0} AND $p K_{\mathrm{a}}$ OF TWENTY-SIX AMINO ACIDS AND ASSESSMENT OF THE SEPARABILITY

TAKESIHI IIIROKAWA*, TOSIHIIJKO GOJO* and YOSIHYUKI KISO
Applied Physics and Chemistry, Faculty of Engineering, Hiroshima University, Shitami, Saijo, Higashihiroshima 724 (Japan)
(Received July I Ith, 1986)

Abstract

SUMMARY

Isotachophoretic qualitative indices, R_{E}, of twenty-six amino acids were measured at several pH_{L} values in the range of $8.6-9.6$. The absolute mobility, m_{0}, and $\mathrm{p} K_{\mathrm{a}}$ values were evaluated by the use of a least-squares method utilizing a simulation of the isotachophoretic steady state. The $\mathrm{p} K_{\mathrm{a}}$ values were in good agreement with values cited in the literature. The R_{E} values simulated using the evaluated constants were in good agreement with R_{E} values converted from step heights observed previously. By comparing the previously observed separation behaviour of amino acids with their simulated effective mobilities, it is concluded that when the effective mobility of samples differs by $c a .1 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~V}^{1} \mathrm{~s}^{-1}$ at the steady state, $c a .10$-nmol samples can be separated by the use of a $80 \mathrm{~cm} \times 0.5 \mathrm{~mm}$ I.D. tube. The simulated effective mobilities of twenty-two amino acids were tabulated to assess the separability under some typical electrolyte conditions.

INTRODUCTION

As reported previously ${ }^{1.2}$, the isotachophoretically steady state can be treated theoretically and isotachopherograms can be simulated, when the absolute mobilities, m_{0}, and the thermodynamic acid dissociation constants, $\mathrm{p} K_{\mathrm{a}}$, of the samples and electrolyte constituents are available. This technique can be used for estimation of the optimum separation condition ${ }^{3,4}$. A microcomputer program, SIPS (simulation of isotachophoretic separation), based on a data base including the m_{0} and $\mathrm{p} K_{\mathrm{a}}$ values of $c a .500$ ionic species, has been developed ${ }^{5}$ and can be used for the practical purpose stated above.

However, in our data base many important samples such as amino acids are not included due to the lack of the physico-chemical constants, especially m_{0}. This

[^0]is due to the fact that the conventional conductivity method cannot be applied simply to the measurement of m_{0} for amphoteric electrolytes such as neutral amino acids. Therefore, among the natural amino acids, the m_{0} values of only two acidic amino acids, Asp^{-}and Glu ${ }^{-}$, have been reported. In contrast, the $\mathrm{p} K_{\mathrm{a}}$ values of amino acids have been extensively studied, although the thermodynamic values obtained are not always available. In isotachophoresis the ionic strengths of the leading, sample and terminating zones are always different. Therefore, in simulations, the thermodynamic $\mathrm{p} K_{\mathrm{a}}$ values must be corrected for the ionic strength by using the Debye-Hückel equation.

The m_{0} and $\mathrm{p} K_{\mathrm{a}}$ values can be evaluated as reported ${ }^{6,7}$ by use of the leastsquares method to fit the observed potential gradient ratios of the sample zones separated isotachophoretically. To increase the utility of the SIPS program, in the present study, the m_{0} and $\mathrm{p} K_{\mathrm{a}}$ values of twenty-six amino acid were evaluated and then added to our data base. Further, the effective mobilities of twenty-two amino acids under several typical electrolyte conditions were simulated using the valuated values to clarify the limitation of separability, taking into account the previous systematic experimental studies by Kopwillem and Lundin ${ }^{8}$ and Everaerts et al. ${ }^{1}$.

EXPFRIMENTAI

The amino acids treated were DL-Ala, β-Ala, α-amino-n-butyric acid (DL- $\alpha-$ Amin), l-Arg, l-Asn, l-Cys, l-Glu, l-Gln, Gly, l-His, L-Hyp, 3,5-I 2 -L-Tyr, dl-Ile, l-Leu, l-Lys, dl-Met, l-Orn, l-Phe, l-Pro, Dl-Ser, Tau, dl-Thr, Dl-Trp, l-Tyr and Dl-Val (guaranteed grade, Tokyo Kasei Co.). Sample solutions ($3-10 \mathrm{mM}$) were prepared by dissolving these amino acids in distilled water or diluted sodium hydroxide solution (Cys). CysH was not considered since it is converted in to Cys in the alkaline solution.

Most of the treated amino acids are neutral amino acids and the $\mathrm{p} K_{\mathrm{a}}$ values of their cationic forms are in the range of 1.5-3.6 and those of their anionic forms are 9.5-10.5. The cationic amino acids are not very mobile at $\mathrm{pH}=c a .3 .5$, the lower limit of isotachophoretically "safe" pH in cationic analysis", except for some basic amino acids, e.g., Arg, Lys and Orn, and a neutral amino acid β-Ala with relatively large $\mathrm{p} K_{\mathrm{a}}$ (3.6). Therefore qualitative indices, R_{E}, of the anions of neutral and acidic amino acids were measured in the pH_{L} (pH of the leading electrolyte) range of 8.6 9.6. The R_{E} is the ratio of the potential gradient, $E\left(\mathrm{~V} \mathrm{~cm}^{-1}\right)$, of a sample zone, E_{S}, to that of the leading zone, E_{L}, which corresponds to the ratio of the effective mobility of the leading ion \bar{m}_{L}, to that of the sample ion, m_{S}, i.e., $R_{E}=E_{\mathrm{S}} / E_{\mathrm{L}}=\bar{m}_{\mathrm{L}} / m_{\mathrm{S}}$.

For the R_{E} measurements of neutral and acidic amino acids the electrolyte systems used were as follows (Nos. 1-6 in Table II): the leading electrolytes were 10 $\mathrm{m} M$ hydrochloric acid solutions and the pH_{L} was adjusted to $8.64,9.00$ and 9.40 by adding 2-amino-2-methyl-1,3-propanediol (amediol) and to $9.03,9.3$ and 9.62 by

[^1]adding ethanolamine, respectively. The low pH limit was chosen in order that the effective mobilities would not be too small. If this were not the case, the temperature increment in the zones could not be neglected. The terminator was $10-30 \mathrm{mM} \beta$-Ala and the pH was adjusted to $c a .10$ by adding barium hydroxide to suppress the disturbance caused by $\mathrm{HCO}_{3}{ }^{-}$. For precise measurement of R_{E}, the asymmetric potential of the potential gradient detection (PGD) used must be corrected ${ }^{6}$. Gly was used as an internal standard for this purpose, since its precise thermodynamic $\mathrm{p} K_{\mathrm{a}}$ has been reported $\left(9.7796 \text { at } 25^{\circ} \mathrm{C}\right)^{\circ}$. The m_{0} value of Gly was first evaluated by isotachophoresis using similar electrolyte conditions as with the other samples. The internal standards were propionate and caproate ions. The evaluated m_{0} value was $37.4 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ ($\mathrm{p} K_{\mathrm{a}}$ value fixed at 9.7796 in the least-squares method). The R_{E} values of Gly simulated using these constants were used for the correction of asymmetric potential under the electrolyte conditions. When Gly was unsuitable for this purpose because of mixed zone formation, Thr, Asn and β-Ala were used indirectly. Since Pro was not very mobile under these conditions, and the R_{E} values were large, β-Ala was used as the standard and Pro as the terminator.

For the analysis of basic amino acids, Arg, Lys and Orn, the leading electrolytes used were 10 mM potassium hydroxide solutions (Nos. 7-10 in Table II). The pH_{L} was adjusted in the range of $6.4-9.4$ by adding $2-(\mathrm{N}$-morpholino) ethanesulphonic acid $\left(\mathrm{pH}_{\mathrm{L}}=6.43\right)$ and Phe (8.84, 9.03, 9.37). The terminator was tris(hydroxymethyl)aminomethane (Tris). The internal standards used were His and Tris and the R_{E} values are listed in Table II. All of the leading electrolytes contained 0.02% hydroxypropylcellulose to suppress electrode reactions and electroendosmosis.

The isotachopherograms were obtained using a Shimadzu isotachophoretic analyzer, IP-1B, equipped with PGD. The temperature was thermostatted at $25^{\circ} \mathrm{C}$. The separating tube used was $c a .40 \mathrm{~cm} \times 0.5 \mathrm{~mm}$ I.D. The driving current applied was $50 \mu \mathrm{~A}$ and a single experiment took ca. 35 min . The pH measurements were carried out using an Horiba expanded pH meter, Model F7ss.

Table I shows the m_{0} and $\mathrm{p} K_{\mathrm{a}}$ values of the electrolyte constituents used in the calculations. These values were taken mainly from the literature ${ }^{10-15}$, but most of the

TABLE I
PHYSICO-CHEMICAL CONSTANTS USED IN THE SIMULATIONS ($25^{\circ} \mathrm{C}$)
$m_{0}=$ Absolute mobility $\left(\mathrm{cm}^{2} \mathrm{~V}^{1} \mathrm{~s}^{-1}\right) \cdot 10^{5} ; \mathrm{p} K_{\mathrm{a}}=$ thermodynamic acid dissociation constant; Tris $=$ tris(hydroxymethyl)aminomethane; amediol $=2$-amino- 2 -methyl-1,3-propanediol; MES $=2$-(N-morpholino)ethanesulphonic acid; $\mathrm{BDB}=5$-bromo-2,4-dihydroxybenzoic acid.

Cation	m_{0}	$p K_{a}$	Anion	m_{0}	$p K_{a}$
$\mathrm{~K}^{+}$	75.72	-	Cl		
Histidine	29.5^{\star}	6.042	Butyric acid	79.08	-
Imidazole	52.0^{\star}	7.15	MES	33.8	4.820
Tris	29.5^{\star}	8.076	BDB	28.0^{\star}	6.15
Amediol	32.0^{\star}	8.78		27.6^{\star}	$3.0^{\star \star}$
Ethanolamine	44.3^{\star}	9.498		50.7^{\star}	7.60^{\star}

[^2]** Assumed value.
mobilities used were determined by our isotachophoretic method. The m_{0} value of amediol was changed from the previously used value of $29.5 \cdot 10^{-5}$ to $32.0 \cdot 10^{5} \mathrm{~cm}^{2}$ $\mathrm{V}^{-1} \mathrm{~s}^{-1}$, taking into account the result of the conductivity measurement for the leading electrolyte. The observed conductivity of the leading electrolyte ($10.02 \mathrm{~m} M$ hydrochloric acid solution, $\mathrm{pH}_{\mathrm{L}}=8.64$, amediol buffer) was $0.998 \mathrm{mS} \mathrm{cm}^{-1} \mathrm{~cm}$ and the simulated value was $0.997 \mathrm{mS} \mathrm{cm}^{-1}$. The conductivity meter used was a TOA Electronics Model CM-30ET.

Table II summarizes the leading electrolyte conditions together with the calculated concentrations, effective mobilities of the leading electrolyte constituents and the R_{E} values of the internal standard. Fig. 1 shows two typical isotachopherograms obtained by the use of electrolyte systems I and 2 in Table II.

For the data processing and the simulation, SIPS programs on SORD M223 MkIII and NEC PC9801E microcomputers and the SIPS-LSQ program on a NEC minicomputer MS120 were used. For plotting the figures, a Watanabe X-Y plotter WX4671 and a Roland DXY-980 were used.

RESULTS AND DISCUSSION

Table III summarizes the observed R_{E} values for all amino acids treated under the electrolyte conditions 110 in Table II. The R_{E} values, measured from the electropherograms for several completely separable combinations of the amino acids under each electrolyte condition (see Fig. 1), were the averages of at least three experimental determinations. The experimental errors were less than ca. $\pm 0.05 R_{E}$ units.

TABLE II

EXPERIMENTAL CONDITIONS FOR THE EVALUATION OF ABSOLUTE MOBILITIES AND p K_{a} values or aminu acids, Calculated concentrations and effective moBILITIES OF LEADING ZONE CONSTITUENTS
$\mathrm{pH}_{1}=\mathrm{pH}$ of leading electrolyte; $C_{\mathrm{L}}=$ total concentration ($\mathrm{m} M$) of leading ion; $\bar{m}_{1}=$ effective mobility $\left(\mathrm{cm}^{2} \mathrm{~V}^{1} \mathrm{~s}^{1}\right)$ of leading ion $\cdot 10^{5} ; C_{\mathrm{B}, \mathrm{L}}=$ total concentration (mM) of buffer ion; $\bar{m}_{\mathrm{B}, \mathrm{L}}=$ effective mobility $\left(\mathrm{cm}^{2} \mathrm{~V}^{1} \mathrm{~s}^{1}\right.$) of buffer ion $10^{\mathrm{s}} ; \mathrm{Std}\left(R_{E}\right)=$ internal standard used for correction of asymmetric potential and the corresponding R_{E} value. Leading ions: chloride (systems 1-6); potassium (systems 7-10).

System	Buffer	$p H_{L}$	C_{t}	\bar{m}_{L}	$C_{B, L}$	$\bar{m}_{B, L}$	$S t d\left(R_{E}\right)$
Anionic analysis							
1	Am	8.64	10.02	74.69	16.57	17.28	Gly (6.12)
2	Am	9.00	10.02	74.69	25.04	11.45	Gly (5.02)
3	Am	9.40	10.02	74.69	47.79	6.004	Gly (3.89)
4	EA	9.03	10.02	74.69	13.11	31.08	Gly (4.01)
5	EA	9.30	10.02	74.69	15.78	25.85	Gly (3.66)
6	EA	9.62	10.02	74.68	22.07	18.51	Gly (3.20)
Cationic analysis							
7	MES	6.43	9.85	71.43	14.51	16.75	His (4.28)
8	Phe	8.84	10.21	71.36	30.82	7.988	Tris (6.23)
9	Phe	9.03	10.21	71.36	23.51	10.47	Tris (7.08)
10	Phe	9.37	10.21	71.36	16.26	15.12	Tris (8.64)

Fig. 1. The observed isotachopherograms for Glu, Tau, Thr, Gln, Gly and Val at $\mathrm{pH}_{\mathrm{L}}=9.00$ buffered by amediol (A), and for Glu, Cys, Asn, Ser, Gln, Phe, Gly and Ala at $\mathrm{pH}_{\mathrm{L}}=6.84$ (B). The leading ion was $10 \mathrm{~m} M$ chloride and the terminator was $30 \mathrm{mM} \beta$-Ala ($\mathrm{pH}=c a .10$ by adding barium hydroxide). The sample amounts were $c a .5-10 \mathrm{nmol}$ and migration current was $50 \mu \mathrm{~A}$.

The black circles in Figs. 2 and 3 show the pH_{L} dependence of the observed R_{E} values of the anionic amino acids in the pH_{L} range of 8.69 .6 (buffers: amediol and ethanolamine). Using these R_{E} values, the m_{0} and $\mathrm{p} K_{\mathrm{a}}$ values were determined by the least-squares method. The curves in Figs. 2 and 3 were plotted using such values. The discontinuities in the curves are due to the different buffers. Even if the pH_{L} value is the same, the pH of the separated sample zones, and consequently the effective mobilities and R_{E} values, will depend on the mobility and $p K_{\mathrm{a}}$ of the buffers used. Table IV shows the observed and the best-fitted R_{E} values, the effective mobilities and the concentrations of the zone constituents, Ala, Glu, Gln, Leu, Thr, Val and Lys. The observed and the simulated R_{E} values were in good agreement, the mean error being in the range of $0.46(\mathrm{Glu})-1.43 \%(\mathrm{Tyr})$. The evaluated m_{0} and $\mathrm{p} K_{\mathrm{a}}$ were listed in Table V together with the $\mathrm{p} K_{\mathrm{a}}$ values obtained by previous methods. In the least-squares method, several $\mathrm{p} K_{\mathrm{a}}$ values were fixed at the literature values as shown in Table V , taking into account the pH range used in the R_{E} measurement. If the R_{E} values for in the completely dissociated state could be measured, m_{0} and $\mathrm{p} K_{\mathrm{a}}$ could be evaluated independently. This is not the case, since the $\mathrm{p} K_{\mathrm{a}}$ values of the anionic forms of the samples are large and isotachophoretic equilibria could not be achieved at the completely dissociated state. Concerning $3,5-\mathrm{I}_{2}-\mathrm{Tyr}$, the reported $\mathrm{p} K_{\mathrm{a}}$ values of $\mathrm{p} K_{2}=6.48$ and $\mathrm{p} K_{3}=7.12$ were used as the initial values in the least-squares method; however, our best-fitted $\mathrm{p} K_{3}=9.69$ was significantly different

TABLE III
OBSERVED R_{E} VALUES OF TWENTY-FIVE AMINO ACIDS
Electrolyte systems numbered as in Table II. $R_{\mathrm{E}}=$ Ratio of potential gradients, $E_{\mathrm{S}} / E_{\mathrm{L} .}$.

Sample	Electrolyte system and pH_{L}					
	1	2	3	4	5	6
	8.64	9.00	9.40	9.03	9.30	9.62
Asp	2.59	2.41	2.20	2.37	2.24	2.03
Glu	2.84	2.61	2.31	2.52	2.35	2.11
Cys	3.21	2.72	2.28	2.50	2.33	2.11
3,5-I ${ }_{2}$-Tyr	3.49	-	2.79	2.99	2.75	2.46
Tau	3.94	3.30	2.76	2.97	2.77	2.52
Asn	4.27	3.63	3.10	3.34	3.14	2.88
Ser	4.77	3.99	3.27	3.46	3.26	2.90
Thr	4.81	4.06	3.38	3.63	3.38	3.04
Gln	5.21	4.42	3.66	3.90	3.65	3.28
Met	5.58	4.65	3.76	4.00	3.77	3.36
Phe	5.70	4.78	3.91	4.28	3.95	3.52
His	5.64	4.78	3.87	4.14	3.88	3.46
Tyr	5.92	4.71	3.88	4.20	3.69	3.17
Gly*	6.12	5.02	3.89	4.02	3.66	3.20
Val	7.47	6.07	4.67	5.01	4.51	3.92
Ala	7.49	5.94	4.69	4.80	4.41	3.82
Trp	7.59	6.11	4.91	5.23	4.73	4.12
Hyp	7.74	6.19	4.78	4.93	4.54	3.94
α-Amin	7.67	6.16	4.80	4.88	4.56	3.93
Ile	8.22	6.64	5.11	5.43	4.94	4.25
Leu	8.00	6.57	5.12	5.36	4.90	4.27
β-Ala	10.64	8.45	6.38	6.18	5.65	4.86
	7	8	9	10		
	6.43	8.84	9.03	9.37		
Arg	2.98	4.01	4.27	5.02		
Lys	3.00	3.77	3.94	4.56		
Orn	2.81	4.20	4.55	5.49		

* Internal standard; simulated value.
from the reported value. For $3,5-\mathrm{I}_{2}-\mathrm{Tyr}$, Tyr and Cys, the pH_{L} conditions were unsuitable for the independent evaluation of two $\mathrm{p} K_{\mathrm{a}}$ values and two m_{0} values; we therefore assumed $m_{2}=2 m_{1}$ in order to decrease unknown constants in the leastsquares method. Except for the $\mathrm{p} K_{\mathrm{a}}$ values obtained by means of this assumption, the evaluated $\mathrm{p} K_{\mathrm{a}}$ agreed well with the values reported previously. Fig. 4 shows the pH dependence of the effective mobility of several amino acids, Asp, Glu, Cys, Tau, Gly, Ala, β-Ala, Leu, His, Orn, Arg and Lys. The curves were plotted using the evaluated absolute mobility and thermodynamic constants and are not for the isotachophoretic steady state. Fig. 5 shows the simulated isotachopherograms for Glu, Cys, Asn, Ser, Gln, Phe, Gly and Ala at $\mathrm{pH}_{\mathrm{L}}=8.64$ and for Glu, Tau, Thr, Gln, Gly and Val at $\mathrm{pH}_{\mathrm{L}}=9.00$ (amediol buffer). The terminator is β-Ala. The simulated and the observed isotachopherogram (Fig. 1) are in good agreement.

Fig. 2. The observed R_{E} values of Asn, Met, Trp, Amin, Cys, Tau, Gln, Hyp and β-Ala. The leading ion was 10 mM chloride. The curves were plotted using the best-fitted mobility and $\mathrm{p} K_{\mathrm{a}}$. The $\mathrm{pH} \mathrm{H}_{\mathrm{L}}$ dependence of the R_{E} values of the internal standard, Gly, is also shown. AM and EA denote the buffers used, amediol and ethanolamine.

Fig. 3. The observed R_{E} values of Glu, Ser, His, Ala, Leu, Asp. Thr, Phe, Val and Ile. The leading ion was 10 mM chloride. Other details as in Fig. 2.

To confirm the evaluated m_{0} and $\mathrm{p} K_{\mathrm{a}}$ values, the step heights of eighteen amino acids observed by Everaerts et al. ${ }^{1}$ using a conductometric detector were converted into R_{E} and these values were compared with the simulated R_{E} values. The amino

TABLE IV

OBSERVED AND SIMULATED R_{E} VALUES OF SEVEN AMINO ACIDS, EFFECTIVE MOBILITIES AND CONCENTRATIONS OF ZONE CONSTITUENTS ($25^{\circ} \mathrm{C}$)

System = electrolyte system (see Table II); dev. $\%=$ percentage deviation; $\bar{m}_{\mathrm{s}}=$ effective mobility ($\mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$) of sample ion $10^{5} ; \mathrm{pH}_{\mathrm{S}}=\mathrm{pH}$ of sample zone; $C_{\mathrm{s}}=$ total concentration (mM) of sample; $C_{\mathrm{B}, \mathrm{s}}=$ total concentration (mM) of buffer ion; $\bar{m}_{\mathrm{R}, \mathrm{s}}=$ effective mobility $\left(\mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{1}\right.$) of buffer ion $\cdot 10^{5}: I=$ ionic strength $\cdot 10^{3}$.

System No.	$R_{\text {F }}$		dev. $\%$	\bar{m}_{S}	${ }^{\text {P }}{ }_{S}$	C_{S}	$C_{\text {B, }}^{1}$	$\bar{m}_{B, S}$	I
	Obs.	Calc.							
Ala									
1	7.49	7.44	0.69	10.04	9.525	6.573	13.78	4.824	2.195
2	5.94	6.07	-2.17	12.31	9.666	6.533	22.28	3.643	2.695
3	4.69	4.67	0.44	15.99	9.883	6.440	45.10	2.316	3.497
4	4.80	4.79	0.12	15.58	9.858	6.006	9.995	13.36	3.170
5	4.41	4.36	1.14	17.13	9.950	5.960	12.70	11.51	3.478
6	3.82	3.79	0.68	19.68	10.11	5.852	19.10	8.704	3.970
	Mean error		0.87						
Glu									
1	2.84	2.83	0.32	26.39	8.862	5.793	13.39	13.82	6.919
2	2.61	2.62	-0.51	28.47	9.205	5.433	22.26	8.453	7.538
3	2.31	2.32	-0.57	32.15	9.577	4.972	45.53	4.310	8.617
4	2.52	2.51	0.30	29.73	9.338	4.932	10.05	25.18	7.359
5	2.35	2.33	0.77	32.03	9.557	4.707	13.06	20.07	8.042
6	2.11	2.12	-0.27	35.30	9.824	4.451	19.73	13.98	8.997
	Mean error		0.46						
GIn									
1	5.21	5.22	-0.12	14.32	9.259	6.408	13.20	7.814	3.452
2	4.42	4.40	0.42	16.97	9.442	6.375	21.69	5.619	4.102
3	3.66	3.67	-0.36	20.33	9.720	6.293	44.51	3.253	4.907
4	3.90	3.91	-0.15	19.12	9.606	5.819	9.301	19.04	4.237
5	3.65	3.62	0.81	20.63	9.743	5.774	12.01	15.84	4.561
6		3.31	-0.91	22.56	9.966	5.665	18.42	11.17	4.943
	Mean error		0.46						
Leu									
1	8.00	8.03	-0.43	9.296	9.486	5.886	13.09	5.198	2.247
2	6.57	6.56	0.11	11.38	9.640	5.834	21.59	3.836	2.752
3	5.12	5.12	-0.08	14.58	9.876	5.715	44.45	2.355	3.504
4	5.36	5.34	0.36	13.98	9.829	5.258	9.284	13.98	3.079
5	4.90	4.86	0.88	15.38	9.935	5.195	12.02	11.79	3.370
6	4.27	4.26	0.18	17.52	10.12	5.051	18.49	8.586	3.785
	Mean error		0.34						

TABLE IV (continued)

System No.	$\boldsymbol{R}_{\mathrm{E}}$		dev. $\%$	\bar{m}_{S}	$\mathrm{p} \mathrm{H}_{\mathrm{S}}$	C_{S}	$C_{B S}^{P}$	$\bar{m}_{B . S}$	I
	Obs.	Calc.							
Thr									
1	4.81	4.81	0.08	15.54	9.241	6.682	13.45	8.043	3.625
2	4.06	4.07	-0.12	18.37	9.424	6.654	21.93	5.814	4.300
3	3.38	3.40	-0.56	21.97	9.700	6.582	44.74	3.385	5.141
4	3.63	3.61	0.43	20.66	9.586	6.116	9.550	19.51	4.462
5	3.38	3.35	0.74	22.26	9.721	6.077	12.25	16.32	4.801
6	3.04	3.07	-1.00	24.32	9.943	5.981	18.64	11.62	5.211
	Mean error		0.49						
Val									
1	7.47	7.43	0.55	10.06	9.470	6.179	13.31	5.362	2.361
2	6.07	6.08	-0.18	12.28	9.622	6.134	21.81	3.979	2.887
3	4.67	4.75	-1.79	15.71	9.855	6.030	44.65	2.458	3.681
4	5.01	4.96	1.08	15.07	9.808	5.573	9.489	14.41	3.249
5	4.51	4.51	-0.07	16.55	9.913	5.519	12.21	12.23	3.556
6	3.92	3.96	- 1.14	18.84	10.09	5.392	18.64	8.995	4.005
	Mean error		0.80						
Lys									
7	3.00	3.01	-0.49	23.69	6.250	6.415	11.09	14.60	6.408
8	3.77	3.72	1.36	19.19	8.548	6.701	30.14	4.363	5.382
9	3.94	3.98	-1.11	17.91	8.684	6.690	21.85	5.606	5.004
10	4.56	4.56	0.08	15.66	8.879	6.660	13.65	7.799	4.346
	Mean error		0.76						

acids were L-Ala, β-Ala, L-Asp, L-Cys, L-Glu, Gly, L-His, L-Hyp, 3,5-I I_{2} - $\mathrm{L}-\mathrm{Tyr}$, L-Ile, l-Leu, Dl-Met, l-Phe, l-Ser, l-Thr, l-Trp, Dl-Tyr and l-Val. 5-Bromo-2,4-dihydroxybenzoate anion (BDB) was used as the leading ion to prevent the disturbance caused by $\mathrm{HCO}_{3}{ }^{-\star}$. The buffers were ethanolamine and Lys, and the pH_{L} was in the range of $9-9.5$. Table VI summarizes the seven leading electrolyte conditions used together with the calculated concentrations and effective mobilities of the electrolyte constituents. Since the given step heights (mm) were those from the leading zone to sample zones in recorder traces (Tables 13.2 and 13.3 in ref. 1), to convert these step heights into R_{E} values, the step heights of the leading zones, h_{L}, were estimated by

$$
\begin{equation*}
h_{\mathrm{L}}=h_{\mathrm{std} /} /\left(R_{\mathrm{E}, \mathrm{std}}-1\right) \tag{1}
\end{equation*}
$$

[^3]
TABLE V

ABSOLUTE MOBILITIES AND THERMODYNAMIC DISSOCIATION CONSTANTS OF TWEN-TY-SIX AMINO ACIDS ($25^{\circ} \mathrm{C}$)

Amino acid	Present method		Other methods $p K_{a}$
	m_{0}	$p K_{a}$	
Ala	-32.2	9.857	$9.866^{9.11}, 9.87^{10,12.13}$
β-Ala	-30.8	10.241	$10.240^{9.11}$
x-Amin	-30.5	9.827	$9.830^{9,11}, 9.833^{10}$
Arg	26.9	8.919	$9.143^{10}, 8.991^{11}, 9.05^{12}, 8.994^{13}$
Asp	-30.1	$3.900{ }^{\text {* }}$	$3.900^{0-11}, 3.63^{12}, 3.86^{13}$
	-55.4	10.002*	$10.002^{9}{ }^{11}, 9.47^{12}, 9.82^{13}$
Asn	- 31.6	9.030	$8.870^{10,11}, 8.85^{12.13}\left(20^{\circ} \mathrm{C}\right)$
Cys	-27.0	8.405	$7.854^{10}, 8.00^{11}$
	-53.9	9.845	$9.854^{10}, 9.850^{12}$
Glu	-27.0	4.324*	$4.288^{9}, 4.324^{10.11}, 4.25^{12}$
	54.3	9.960	$9.387^{9}, 9.475^{10}, 9.96^{11}, 9.67^{12}$
Gln	-28.8	9.224	$9.131^{10,11}$
Gly	-37.4	9.7796^{*}	$9.780^{9}, 9.7796^{10,12,13}, 9.778^{11}$
His	29.6*	6.04*	$6.04^{10.12 .13}, 6.00^{11}$
	-28.3	9.330	$9.33^{10}, 9.17^{11,13}, 9.12^{12}$
Hyp	-30.1	9.816	$9.662^{0-11}, 9.58^{12}\left(20^{\circ} \mathrm{C}\right)$
3,5-1 2 -Tyr	-21.0	$6.5 *$	6.488^{9-11}
	-42.0	9.469	7.12
Ileu	-26.7	9.765	$9.758^{9.13}, 9.761^{10}, 9.752^{11}$
Leu	-26.4	9.728	$9.744^{9.11 .13}, 9.748^{10}, 9.77^{12}$
Lys	26.4	9.127	$8.951^{10,12}, 9.18^{11,12}$
	$-26.4 *$	10.79*	$10.53^{10.13}, 10.79^{11}, 10.72^{12}\left(0.01 \mathrm{M}, 20^{\circ} \mathrm{C}\right)$
Met	-29.3	9.344	$9.210^{10,11,12}, 9.27^{13}$
Orn	28.4	8.712	$8.65^{10,12}, 8.690^{11,13}$
	-28.4*	10.755*	$10.76^{10}, 10.755^{11}, 10.67^{12}(0.02 \mathrm{M})$
Phe	-26.9	9.262	$9.119^{10}, 9.13^{11,12}$
Pro	-25.4	10.640*	$10.640^{9.10 .13}, 10.643^{11}, 10.60^{12}$
Ser	-33.6	9.302	$9.208^{9} 11.13$
Tau	-37.9	9.182	$9.061^{9-11.13}$
Thr	-30.9	9.200	$9.100^{9.10 .13}, 9.099^{11}$
Trp	-25.4	9.594	$\begin{aligned} & 9.377^{10} \cdot 9.39^{11}, 9.55^{12}\left(0.01 \mathrm{M}, 20^{\circ} \mathrm{C}\right) \\ & 9.43^{12}\left(1 \mathrm{M}, 20^{\circ} \mathrm{C}\right), 9.44^{13} \end{aligned}$
Tyr	-20.0	9.099	$9.108^{10}, 9.11^{11-13}, 9.19{ }^{12}$
	-40.0	10.189	$10.07^{10,12}, 10.13^{11.13}, 10.47^{12}$
Val	-28.4	9.710	$9.719^{9.13}, 9.722^{10}, 9.716^{11}, 9.62^{12}$

* Value fixed in the least-squares method.
where $h_{\text {std }}$ is the observed step height of a standard sample and $R_{E, s t d}$ the R_{E} value of the standard. Using the estimated h_{L}, the R_{E} values of the sample zones, $R_{E, S}$, can be evaluated

$$
\begin{equation*}
R_{E, \mathrm{~S}}=\left(h_{\mathrm{S}}+h_{\mathrm{L}}\right) / h_{\mathrm{L}} \tag{2}
\end{equation*}
$$

Fig. 4. The pH dependence of the effective mobility of Asp, Glu, Tau, Gly, Ala, B-Ala, Leu, His, Orn, Arg and Lys, not for the isotachophoretically steady state. The ionic strength is zero. $\mathrm{pH}_{s}=\mathrm{pH}$ of sample zone.

Fig. 5. The simulated isotachopherograms of Glu, Tau, Thr, Gln, Gly and Val at $\mathrm{pH}_{\mathrm{L}}=9.00$ buffered by amediol (A), and Glu, Cys, Asn, Ser, Gln, Phe, Gly and Ala at $\mathrm{pH}_{\mathrm{L}}=8.64$ (B). The leading ion was 10 mM chloride. The sample amounts were 10 nmol of each acid. Migration current: $50 \mu \mathrm{~A}$.

TABLE VI
EXPERIMENTAL CONDITIONS USED FOR THE MEASUREMENT OF STEP HEIGHTS FOR EIGHTEEN AMINO ACIDS BY EVERAFRTS et al. ${ }^{1}$, CALCULATED CONCENTRATIONS AND EFFECTIVE MOBILITIES OF LEADING ZONE CONSTITUENTS

For the abbreviations used, see Table II. The leading ion is 5-bromo-2,4-dihydroxybenzoate.

System	Buffer	$p H_{L}$	C_{L}	\bar{m}_{L}	$C_{B, L}$	$\bar{m}_{B, L}$	I
1	Lys	9.07	4.00	42.05	14.18	12.74	12.0
2	Lys	9.22	4.00	42.12	17.13	10.58	12.1
3	Lys	9.42	4.00	42.09	23.84	7.613	12.6
4	EA	9.00	4.00	42.21	10.14	31.47	11.8
5	EA	9.20	4.00	42.40	11.52	27.86	11.9
6	EA	9.36	4.00	42.51	13.16	24.47	11.9
7	EA	9.55	4.00	42.61	16.07	20.12	12.0

where h_{s} is the step height of the sample from the leading to the sample zone. The simulated values of $R_{\text {Estd }}$ for the standard Gly ware shown in Table VI. Substituting $R_{E, s t d}$ and the reported $h_{\text {std }}$ ($135,124.5$ and 117 mm for systems $1-3$ in Table VI) into eqn. I gave the estimated h_{L} values of $80.8,83.0$ and 92.1 mm respectively. Table VII

TABLE VII

CORRECTED AND SIMULATED R_{ε} VALUES OF EIGHTEEN AMINO ACIDS UNDER THE ELECTROLYTE CONDITIONS $1-3$ IN TABLE VI

The original step heights were measured by Everaerts et al. ${ }^{1}$. Corr. $=$ Corrected R_{E} values; Sim. $=$ simulated R_{E} values using the evaluated m_{0} and $\mathrm{p} K_{\mathrm{a}}$.

Amino acid	$p H_{L}=9.07$			$p H_{L}=9.22$			$p H_{L}=9.42$		
	Corr.	Calc.	dev. $\%$	Corr.	Calc.	dev. $\%$	Corr.	Calc.	dev./\%
Asp	1.40	1.39	0.7	1.35	1.35	0	1.30	1.28	1.5
Cys	1.50	1.53	-2.0	1.43	1.44	-0.7	1.34	1.33	0.7
Glu	1.46	1.49	-2.1	1.40	1.44	-2.9	1.36	1.35	0.7
I_{2}-Tyr	1.75	1.77	-1.1	1.70	1.70	0	1.62	1.60	1.2
Ser	2.15	2.19	-1.9	1.99	2.06	-3.5	1.85	1.90	-2.7
Thr	2.18	2.24	-2.8	2.05	2.12	-3.4	1.96	1.97	-0.5
Tyr	2.51	2.62	-4.4	2.34	2.43	-3.8	2.13	2.18	-2.3
Met	2.47	2.53	-2.4	2.33	2.38	-2.1	2.15	2.19	-1.9
Gly	2.67	-	std	2.50	-	std	2.27	-	std
His	2.51	2.58	-2.8	2.55	2.43	4.7	2.18	2.23	-2.3
Phe	2.61	2.62	-0.4	2.46	2.47	-0.4	2.26	2.28	-0.9
Ala	3.18	3.17	0.3	2.99	2.96	1.0	2.68	2.67	0.4
Val	3.09	3.19	-3.2	2.93	2.97	-0.4	2.66	2.68	-0.8
Trp	3.12	3.26	-4.5	2.95	3.04	- 3.1	2.69	2.74	-1.9
Hyp	3.10	3.25	-4.8	2.95	3.03	-2.7	2.66	2.73	-2.6
He	3.33	3.44	-3.3	3.17	3.20	-0.9	2.86	2.87	-0.3
Leu	3.35	3.40	-1.5	3.15	3.16	-0.3	2.85	2.84	0.4
β-Ala	3.97	-	-	3.81	-	-	3.23	-	-
Mean error	(\%)		2.4			1.9			1.3

shows the converted R_{E} values from the observed step heights for the electrolyte systems using Lys as buffer (electrolyte systems l-3) together with the simulated R_{E}. The mean deviations, except for β-Ala, between the observed and the simulated R_{E} values were $2.4,1.9$ and 1.3% respectively. However, the simulation of the steady state of β-Ala as the terminator failed: the pH of the β-Ala zone increased over the isoelectric point of Lys buffer corresponding to conversion of Lys cations into anions. This may suggest that β-Ala was no longer the actual terminator and that hydroxide ions may fulfil this rôle ${ }^{1}$.

Table VIII summarizes the converted and the simulated R_{E} values for the electrolyte systems 4-7 (ethanolamine buffer). The mean deviations were 3.5, 3.2, 2.1 and 3.9% respectively. Except for system 6, the deviations were about twice as large as those found in the the electrolyte systems buffered by Lys. Apparently, from Table VIII, these relatively large mean errors are caused by the large deviations between the observed and the simulated R_{E} of Trp, Hyp, Ile, Leu and β-Ala. Since ethanolamine was also used in our R_{E} measurement, such deviations for the electrolyte systems 4,5 and 7 were not expected.

We confirmed these experimental facts for twenty-two amino acids using a leading electrolyte of $4 \mathrm{~m} M \mathrm{BDB}$ buffered by ethanolamine at $\mathrm{pH}_{\mathrm{L}}=9.06$. The mean error between the observed and the simulated values was 2.2% for all samples, and 4.1% for Amin, Hyp, Trp, Ile, Leu and β-Ala. Since the migration current was

TABLE VIII
CORRECTED AND SIMULATED R_{E} VALUES OF EIGHTEEN AMINO ACIDS UNDER THE ELECTROLYTE CONDITIONS 4-7 IN TABLE VI
The original step heights were measured by Everaerts et al. ${ }^{1}$. For the abbreviations used, see Table VII.

Amino	$p H_{L}$	9.00		$\mathrm{pH}_{\text {I }}$	9.20		$p H_{L}$	9.36		$p H_{L}$	$=9.5$	
	Corr.	Sim.	$d e v / \%$	Corr.	Sim.	dev/\%	Corr.	Sim.	dev/\%	Corr.	Sim.	dev/\%
Asp	1.40	1.37	2.1	1.34	1.32	1.5	1.32	1.28	3.0	1.34	1.22	9.0
Cys	1.50	1.49	0.7	1.41	1.40	0.7	1.38	1.33	3.6	1.30	1.25	3.8
Glu	1.48	1.47	0.7	1.42	1.40	1.4	1.36	1.35	0.7	1.31	1.27	3.1
I_{2}-Tyr	1.74	1.75	-0.6	1.66	1.66	0.0	1.55	1.59	-2.6	1.45	1.51	-4.1
Ser	2.10	2.04	2.9	1.92	1.95	-1.6	1.89	1.86	1.6	1.75	1.76	-0.6
Thr	2.10	2.12	-1.0	2.03	2.02	0.5	1.95	1.94	0.5	1.83	1.84	-0.5
Tyr	2.32	2.46	-6.0	2.19	2.30	-5.0	2.13	2.16	-1.4	1.92	1.99	-3.6
Met	2.30	2.37	-3.0	2.21	2.25	-1.8	2.19	2.15	1.8	2.03	2.03	0.0
Gly	2.35	-	std	2.24	-	std	2.12	-	std	1.97	-	std
His	2.41	2.43	-0.8	2.29	2.31	-0.9	2.25	2.21	1.8	2.08	2.08	0.0
Phe	2.44	2.48	-1.6	2.33	2.36	-1.3	2.28	2.26	0.9	2.11	2.14	-1.4
Ala	2.76	2.82	-2.2	2.61	2.68	-2.7	2.55	2.53	0.8	2.31	2.35	-1.7
Val	2.79	2.92	-4.7	2.66	2.76	-3.8	2.60	2.61	-0.4	2.36	2.43	-3.0
Trp	2.86	3.04	-6.3	2.68	2.88	-7.5	2.66	2.73	-2.6	2.41	2.55	-5.8
Hyp	2.80	2.93	-4.6	2.69	2.77	-3.0	2.60	2.63	-1.2	2.35	2.43	-3.4
Ile	2.98	3.17	-6.4	2.80	3.00	-7.1	2.72	2.84	-4.4	2.47	2.63	-6.5
Leu	3.00	3.14	-4.7	2.80	2.97	-6.1	2.74	2.81	-2.6	2.49	2.61	-4.8
β-Ala	3.33	3.68	-10.5	3.19	3.48	-9.1	3.12	3.29	-5.4	2.67	3.03	-13.5
Mean error (\%)			3.5			3.2			2.1			3.9

TABLE IX
SIMULATED EFFECTIVE MOBILITIES OF TWENTY-TWO AMINO ACIDS UNDER THE ELECTROLYTE CONDITIONS OF pH ${ }_{L}=8.6,9.0,9.4$ AND 9.7 BUFFERED BY AMEDIOL
The leading ion is 10 mM chloride. The values cited are mobility. $10^{5}\left(\mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$. The diagonal values are the effective mobilities and the others are the differences.

	Asp	Glu	Cys	$I_{2}-\mathrm{Tyr}$	Tau	Asn	Ser	Thr	Gln	Met	His	Phe	Trr	Gly	Val	Ala	Trp	Amin	Hyp	Leu	He	β-Ala
$p H_{L}=8.6$																						
1 Asp	28.8	2.6	5.8	7.5	10.1	11.5	13.3	13.5	14.7	15.6	15.9	15.9	16.4	16.8	18.9	19.0	19.1	19.2	19.2	19.7	19.8	21.9
2 Glu		26.2	3.2	4.9	7.5	9.0	10.8	11.0	12.2	13.0	13.3	13.3	13.8	14.3	16.4	16.4	16.5	16.6	16.7	17.1	17.3	19.3
3 Cys			23.0	1.7	4.3	5.7	7.6	7.8	8.9	9.8	10.1	10.1	10.6	11.0	13.1	13.2	13.3	13.4	13.4	13.9	14.1	16.1
$4 \mathrm{I}_{2}$-Tyr				21.3	2.6	4.1	5.9	6.1	7.3	8.1	8.4	8.4	8.9	9.3	11.5	11.5	11.6	11.7	11.8	12.2	12.4	14.4
5 Tau					18.7	1.5	3.3	3.5	4.7	5.5	5.8	5.8	6.3	6.8	8.9	8.9	9.0	9.1	9.2	9.6	9.8	11.8
6 Asn						17.3	1.8	2.0	3.2	4.0	4.3	4.4	4.8	5.3	7.4	7.4	7.5	7.7	7.7	8.1	8.3	10.3
7 Ser							15.5	0.2	1.4	2.2	2.5	2.6	3.0	3.5	5.6	5.6	5.7	5.9	5.9	6.3	6.5	8.5
8 Thr								15.3	1.2	2.0	2.3	2.4	2.8	3.3	5.4	5.4	5.5	5.7	5.7	6.1	6.3	8.3
9 Gln									14.1	0.9	1.2	1.2	1.6	2.1	4.2	4.2	4.3	4.5	4.5	4.9	5.1	7.1
10 Met										13.2	0.3	0.3	0.8	1.2	3.4	3.4	3.5	3.6	3.7	4.1	4.3	6.3
11 His											12.9	0.0	0.5	0.9	3.1	3.1	3.2	3.3	3.4	3.8	4.0	6.0
12 Phe												12.9	0.5	0.9	3.0	3.1	3.2	3.3	3.3	3.8	3.9	6.0
13 Tyr													12.4	0.5	2.6	2.6	2.7	2.8	2.9	3.3	3.5	5.5
14 Gly														12.0	2.1	2.1	2.2	2.4	2.4	2.9	3.0	5.0
15 Val															9.9	0.0	0.1	0.3	0.3	0.7	0.9	2.9
16 Ala																9.8	0.1	0.2	0.3	0.7	0.9	2.9
17 Trp																	9.7	0.1	0.2	0.6	0.8	2.8
18 Amin																		9.6	0.0	0.5	0.6	2.7
19 Hyp																			9.6	0.4	0.6	2.6
20 Leu																				9.1	0.2	2.2
21 Ile																					9.0	2.0
22β-Ala																						6.9

	Asp	Glu	Cys	$I_{2}-T y r$	Tau	Asn	Ser	Thr	$G l n$	Met	His	Phe	Tyr	Gly	Ala	Val	Trp	Amin	Hyp	Leu	Ile	$\beta-$ Ala
$p H_{L}=9.0$																						
1 Asp	30.6	2.2	3.3	6.8	8.2	10.2	11.9	12.3	13.7	14.5	14.9	15.0	15.1	15.8	18.3	18.3	18.6	18.6	18.7	19.2	19.4	21.9
2 Glu		28.5	1.2	4.6	6.0	8.0	9.8	10.1	11.5	12.4	12.8	12.9	12.9	13.6	16.2	16.2	16.4	16.5	16.5	17.1	17.3	19.7
3 Cys			27.3	3.5	4.9	6.8	8.6	8.9	10.3	11.2	11.6	11.7	11.7	12.4	15.0	15.0	15.2	15.3	15.3	15.9	16.1°	18.5
$4 \mathrm{I}_{2}$-Tyr				23.9	1.4	3.4	5.1	5.5	6.9	7.8	8.1	8.2	8.3	9.0	11.6	11.6	11.8	11.8	11.9	12.5	12.6	15.1

5 Tau					22.4	2.0	3.7	4.1	5.5	6.4	6.7	6.8	6.9	7.6	10.1	10.1	10.4	10.4	10.5	11.0	11.2	13.7
6 Asn						20.5	1.7	2.1	3.5	4.4	4.7	4.9	4.9	5.6	8.2	8.2	8.4	8.5	8.5	9.1	9.3	11.7
7 Ser							18.7	0.4	1.7	2.6	3.0	3.1	3.1	3.8	6.4	6.4	6.6	6.7	6.7	7.3	7.5	9.9
8 Thr								18.4	1.4	2.3	2.6	2.8	2.8	3.5	6.1	6.1	6.3	6.4	6.4	7.0	7.2	9.6
9 Gln									17.0	0.9	1.3	1.4	1.4	2.1	4.7	4.7	4.9	5.0	5.0	5.6	5.8	8.2
10 Met										16.1	0.4	0.5	0.5	1.2	3.8	3.8	4.0	4.1	4.1	4.7	4.9	7.3
11 His											15.7	0.1	0.1	0.9	3.4	3.4	3.6	3.7	3.8	4.3	4.5	7.0
12 Phe												15.6	0.0	0.7	3.3	3.3	3.5	3.6	3.6	4.2	4.4	6.8
13 Tyr													15.6	0.7	3.3	3.3	3.5	3.6	3.6	4.2	4.4	6.8
14 Gly														14.9	2.6	2.6	2.8	2.9	2.9	3.5	3.7	6.1
15 Ala															12.3	0.0	0.2	0.3	0.3	0.9	1.1	3.5
16 Val																12.3	0.2	0.3	0.3	0.9	1.1	3.5
17 Trp																	12.1	0.1	0.1	0.7	0.9	3.3
18 Amin																		12.0	0.0	0.6	0.8	3.2
19 Hyp																			12.0	0.6	0.8	3.2
20 Leu																				11.4	0.2	2.6
21 Il																					11.2	2.4
22β-Ala																						8.8
	Asp	Cys	Glu	$J_{2}-T y r$	Tau	Asn	Ser	Thr	$G l n$	Tyr	Met	$G l y$	His	Phe	Ala	Val	Amin	Hyp	Trp	Leu	Ile	$\beta-A l a$
${ }_{p} H_{L}-9.4$																						
1 Asp	33.8	1.4	1.7	6.7	6.9	10.0	11.1	11.9	13.5	14.1	14.2	14.6	14.7	15.1	17.8	18.1	18.3	18.3	18.6	19.2	19.4	22.1
2 Cys		32.4	0.3	5.3	5.5	8.6	9.7	10.5	12.1	12.7	12.8	13.3	13.3	13.7	16.5	16.7	16.9	16.9	17.2	17.8	18.0	20.7
3 Glu			32.2	5.0	5.3	8.3	9.4	10.2	11.8	12.5	12.5	13.0	13.0	13.4	16.2	16.4	16.6	16.7	16.9	17.6	17.8	20.4
$4 \mathrm{I}_{2}$-Tyr				27.1	0.2	3.3	4.4	5.2	6.8	7.4	7.5	7.9	8.0	8.3	11.1	11.4	11.6	11.6	11.9	12.5	12.7	15.4
5 Tau					26.9	3.0	4.1	4.9	6.5	7.2	7.2	7.7	7.8	8.1	10.9	11.2	11.3	11.4	11.7	12.3	12.5	15.1
6 Asn						23.9	1.1	1.9	3.5	4.1	4.2	4.7	4.7	5.1	7.9	8.1	8.3	8.4	8.6	9.3	9.4	12.1
7 Ser							22.8	0.8	2.4	3.1	3.1	3.6	3.6	4.0	6.8	7.0	7.2	7.3	7.5	8.2	8.3	11.0
8 Thr								22.0	1.6	2.2	2.3	2.8	2.8	3.2	6.0	6.2	6.4	6.5	6.7	7.4	7.5	10.2
9 Gln									20.3	0.6	0.7	1.2	1.2	1.6	4.4	4.6	4.8	4.9	5.1	5.7	5.9	8.6
10 Tyr										19.7	0.1	0.5	0.6	0.9	3.7	4.0	4.2	4.2	4.5	5.1	5.3	8.0
11 Met											19.6	0.5	0.5	0.9	3.7	3.9	4.1	4.2	4.4	5.0	5.2	7.9
12 Gly												19.2	0.0	0.4	3.2	3.5	3.6	3.7	4.0	4.6	4.8	7.4
13 His													19.1	0.4	3.2	3.4	3.6	3.6	3.9	4.5	4.7	7.4
14 Phe														18.8	2.8	3.0	3.2	3.3	3.6	4.2	4.4	7.0
15 Ala															16.0	0.3	0.4	0.5	0.8	1.4	1.6	4.2
16 Val																15.7	0.2	0.2	0.5	1.1	1.3	4.0
17 Amin																	15.6	0.1	0.3	1.0	1.1	3.8
18 Hyp																		15.5	0.3	0.9	1.1	3.7

TABLE IX (continued)

	Asp	Cys	Glu	$I_{2}-T y r$	Tau	Asn	Ser	Thr	Gln	Tyr	Met	$G l y$	His	Phe	Ala	Val	Amin	$H_{y p}$	Trp	Leu	Ile	β-Ala
19 Trp																			15.2	0.6	0.8	3.5
20 Leu																				14.6	0.2	2.9
21.19																					14.4	2.7
22β-Ala																						11.7
	Asp	Cys	Glu	Tau	$I_{2}-T y r$	Asn	Ser	Thr	Tyr	Gly	Gln	Met	His	Phe	Ala	Amin	Val	Hyp	Trp	Leu	He	$\beta-A l a$
$p H_{L}=9.7$																						
1 Asp	36.9	0.6	1.3	7.1	7.4	11.1	11.3	12.6	13.9	13.9	14.4	14.8	15.4	16.1	17.6	18.3	18.3	18.4	19.3	19.7	19.8	22.2
2 Cys		36.3	0.7	6.5	6.7	10.4	10.7	12.0	13.2	13.3	13.8	14.2	14.8	15.4	17.0	17.6	17.7	17.7	18.6	19.0	19.2	21.6
3 Glu			35.6	5.8	6.0	9.7	10.0	11.3	12.5	12.6	13.1	13.5	14.1	14.7	16.3	16.9	17.0	17.0	17.9	18.3	18.5	20.9
4 Tau				29.8	0.3	4.0	4.3	5.5	6.8	6.8	7.3	7.7	8.3	9.0	10.6	11.2	11.3	11.3	12.2	12.6	12.7	15.1
$5 \mathrm{I}_{2}$-Tyr					29.6	3.7	4.0	5.3	6.5	6.6	7.0	7.5	8.1	8.7	10.3	10.9	11.0	11.0	11.9	12.3	12.4	14.9
6 Asn						25.9	0.3	1.6	2.8	2.9	3.3	3.7	4.4	5.0	6.6	7.2	7.3	7.3	8.2	8.6	8.7	11.1
7 Ser							25.6	1.3	2.5	2.6	3.1	3.5	4.1	4.7	6.3	6.9	7.0	7.0	7.9	8.3	8.5	10.9
8 Thr								24.3	1.2	1.3	1.8	2.2	2.8	3.4	5.0	5.6	5.7	5.7	6.6	7.0	7.2	9.6
9 Tyr									23.1	0.1	0.5	0.9	1.6	2.2	3.8	4.4	4.5	4.5	5.4	5.8	5.9	8.3
10 Gly										23.0	0.5	0.9	1.5	2.1	3.7	4.3	4.4	4.4	5.3	5.7	5.9	8.3
11 Gln											22.5	0.4	1.0	1.7	3.2	3.9	3.9	4.0	4.9	5.3	5.4	7.8
12 Met												22.1	0.6	1.2	2.8	3.4	3.5	3.6	4.4	4.9	5.0	7.4
13 His													21.5	0.6	2.2	2.8	2.9	2.9	3.8	4.2	4.4	6.8
14 Phe														20.9	1.6	2.2	2.3	2.3	3.2	3.6	3.7	6.1
15 Ala															19.3	0.6	0.7	0.7	1.6	2.0	2.1	4.6
16 Amin																18.7	0.1	0.1	1.0	1.4	1.5	4.0
17 Val																	18.6	0.0	0.9	1.3	1.5	3.9
18 Hyp																		18.6	0.9	1.3	1.4	3.8
19 Trp																			17.7	0.4	0.5	2.9
20 Leu																				17.3	0.1	2.5
21 Ile																					17.1	2.4
22 -Ala																						14.7

TABLE X SIMULATED EFFECTIVE MOBILITIES OF
Other details as in Table IX.

	Asp	Glu	Cys	Tau	I_{2}-Tyr	Asn	Scr	Thr	Gln	Gly	Met	His	Tyr	Phe	Ala	Val	Amin	Hyp	Trp	Leu	Ile	β-Ala
$p H_{L}=9.0$																						
1 Asp	31.4	1.9	2.0	6.3	6.5	9.1	10.1	10.9	12.4	12.9	13.1	13.5	13.6	13.9	16.0	16.5	16.5	16.5	17.1	17.5	17.7	19.6
2 Glu		29.5	0.1	4.4	4.6	7.2	8.2	9.0	10.5	11.0	11.2	11.6	11.7	12.0	14.1	14.6	14.6	14.6	15.2	15.6	15.8	17.7
3 Cys			29.4	4.3	4.4	7.1	8.1	8.9	10.4	10.9	11.0	11.5	11.5	11.9	14.0	14.4	14.4	14.5	15.0	15.5	15.6	17.5
4 Tau				25.1	0.2	2.8	3.8	4.6	6.1	6.6	6.8	7.3	7.3	7.6	9.7	10.2	10.2	10.3	10.8	11.2	11.4	13.3
$5 \mathrm{I}_{2}$-Tyr					24.9	2.7	3.7	4.5	6.0	6.5	6.6	7.1	7.1	7.4	9.5	10.0	10.0	10.1	10.6	11.1	11.2	13.1
6 Asn						22.3	1.0	1.8	3.3	3.8	3.9	4.4	4.4	4.8	6.9	7.3	7.3	7.4	8.0	8.4	8.5	10.5
7 Ser							21.3	0.8	2.3	2.8	2.9	3.4	3.4	3.8	5.9	6.3	6.3	6.4	6.9	7.4	7.5	9.4
8 Thr								20.5	1.5	2.0	2.1	2.6	2.6	3.0	5.1	5.5	5.5	5.6	6.1	6.6	6.7	8.7
9 Gln									19.0	0.5	0.6	1.1	1.1	1.5	3.6	4.0	4.0	4.1	4.6	5.1	5.2	7.1
10 Gly										18.5	0.1	0.6	0.6	1.0	3.1	3.5	3.5	3.6	4.1	4.6	4.7	6.6
11 Met											18.4	0.5	0.5	0.8	2.9	3.4	3.4	3.5	4.0	4.5	4.6	6.5
12 His												17.9	0.0	0.3	2.4	2.9	2.9	3.0	3.5	4.0	4.1	6.0
13 Tyr													17.9	0.3	2.4	2.9	2.9	3.0	3.5	4.0	4.1	6.0
14 Phe														17.5	2.1	2.6	2.6	2.7	3.2	3.6	3.8	5.7
15 Ala															15.4	0.5	0.5	0.6	1.1	1.5	1.7	3.6
16 Val																15.0	0.0	0.1	0.6	1.1	1.2	3.1
17 Amin																	15.0	0.1	0.6	1.1	1.2	3.1
18 Hyp																		14.9	0.5	1.0	1.1	3.0
19 Trp																			14.3	0.5	0.6	2.5
20 Leu																				13.9	0.1	2.0
21 lle																					13.8	1.9
22β-Ala																						11.8

TABLE X (continued)

	Asp	Cus	Glu	Tau	$I_{2}-T y r$	Asn	Ser	Thr	Gln	Gly	Met	Tyr	His	Phe	Ala	$A \min$	Val	$H_{y p}$	$T t p$	Leu	He	β-Ala
$p H_{L}=9.2$																						
1 Asp	32.8	1.5	1.7	6.4	6.5	9.4	10.3	11.2	12.8	13.2	13.4	13.5	13.9	14.3	16.4	16.9	16.9	17.0	17.5	18.0	18.1	20.2
2 Cys		31.3	0.2	4.9	5.0	7.9	8.8	9.7	11.3	11.6	11.9	12.0	12.4	12.8	14.8	15.3	15.4	15.4	16.0	16.5	16.6	18.6
3 Glu			31.1	4.7	4.8	7.7	8.6	9.5	11.1	11.5	11.7	11.8	12.2	12.6	14.7	15.2	15.2	15.3	15.8	16.3	16.4	18.5
4 Tau.				26.5	0.1	3.1	4.0	4.8	6.4	6.8	7.0	7.2	7.5	7.9	10.0	10.5	10.5	10.6	11.2	11.6	11.8	13.8
$5 \mathrm{I}_{2}$-Tyr					26.3	2.9	3.8	4.7	6.3	6.7	6.9	7.0	7.4	7.8	9.9	10.4	10.4	10.5	11.0	11.5	11.6	13.7
6 Asn						23.4	0.9	1.8	3.4	3.7	4.0	4.1	4.5	4.9	6.9	7.4	7.4	7.5	8.1	8.6	8.7	10.7
7 Ser							22.5	0.9	2.5	2.8	3.1	3.2	3.6	4.0	6.0	6.5	6.5	6.6	7.2	7.7	7.8	9.8
8 Thr								21.6	1.6	1.9	2.2	2.3	2.7	3.1	5.1	5.6	5.7	5.7	6.3	6.8	6.9	8.9
9 Gln									20.0	0.4	0.6	0.7	1.1	1.5	3.6	4.1	4.1	4.2	4.7	5.2	5.3	7.4
10 Gly										19.7	0.2	0.4	0.7	1.1	3.2	3.7	3.7	3.8	4.4	4.8	5.0	7.0
11 Met											19.4	0.1	0.5	0.9	3.0	3.5	3.5	3.6	4.1	4.6	4.7	6.8
12 Туг												19.3	0.4	0.8	2.8	3.3	3.3	3.4	4.0	4.5	4.6	6.6
13 His													18.9	0.4	2.5	3.0	3.0	3.0	3.6	4.1	4.2	6.3
14 Phe														18.5	2.1	2.6	2.6	2.7	3.2	3.7	3.8	5.9
15 Ala															16.5	0.5	0.5	0.6	1.2	1.6	1.8	3.8
16 Amin																16.0	0.0	0.1	0.7	1.1	1.3	3.3
17 Val																	16.0	0.1	0.7	1.1	1.3	3.3
18 Hyp																		15.9	0.6	1.1	1.2	3.2
19 Tгр																			15.3	0.5	0.6	2.6
20 Leu																				14.8	0.1	2.2
21 Jle																					14.7	2.0
22β-Ala																						12.7

	Asp	Cys	Glu	Tau	$I_{2}-T_{Y}$	A.nn	Ser	Thr	Gln	Gly	Tyr	Met	His	Phe	Ala	Amin	Val	Hyp	Trp	Leu	He	β-Ala
$p H_{l .}=9.4$																						
1 Asp	34.6	1.0	1.5	6.6	6.7	10.0	10.6	11.7	13.3	13.3	13.5	13.8	14.4	14.9	16.7	17.3	17.3	17.4	18.1	18.5	18.7	20.7
2 Cys		33.5	0.5	5.5	5.6	8.9	9.6	10.6	12.3	12.3	12.5	12.8	13.4	13.8	15.7	16.2	16.3	16.3	17.1	17.5	17.6	19.7
3 Glu			33.0	5.0	5.2	8.4	9.1	10.1	11.8	11.8	12.0	12.3	12.9	13.4	15.2	15.7	15.8	15.8	16.6	17.0	17.1	19.2
4 Tau				28.0	0.1	3.4	4.1	5.1	6.7	6.8	7.0	7.3	7.8	8.3	10.2	10.7	10.8	10.8	11.5	12.0	12.1	14.2
$5 \mathrm{I}_{2}$-Tyr					27.9	3.3	3.9	5.0	6.6	6.6	6.8	7.2	7.7	8.2	10.0	10.6	10.6	10.7	11.4	11.8	12.0	14.1
6 Asn						24.6	0.7	1.7	3.3	3.4	3.6	3.9	4.4	4.9	6.8	7.3	7.4	7.4	8.1	8.6	8.7	10.8
7 Ser				\cdots			23.9	1.0	2.7	2.7	2.9	3.2	3.8	4.3	6.1	6.6	6.7	6.7	7.5	7.9	8.0	10.1
8 Thir								22.9	1.6	1.7	1.9	2.2	2.7	3.2	5.1	5.6	5.7	5.7	6.4	6.9	7.0	9.1
9 Gln									21.3	0.0	0.2	0.5	1.1	1.6	3.4	4.0	4.0	4.1	4.8	5.2	5.4	7.4
10 Gly										21.2	0.2	0.5	1.1	1.6	3.4	3.9	4.0	4.0	4.8	5.2	5.3	7.4

	${ }_{0}^{8}$	
	\approx	
	\pm	
	E	
minonnoso	3	
$\cdots \mathrm{mmat}$	$\underset{\sim}{3}$	
	\％	oomnnormm－breobo
$\cdots \mathrm{m} \underset{\sim}{\mathrm{i}} \stackrel{\infty}{\infty} \stackrel{\infty}{=}$	$\stackrel{\square}{7}$	
mon	\＃	
\bigcirc	定	
\％	\％	
$\stackrel{\bigcirc}{i}$	5	
	谷	ッarotomnryay
	寅	
	E	
	シ	
	辇	$\stackrel{\infty}{\text { ® }}$
	$\stackrel{3}{\text { E }}$	
	E	
	范	
	－	\bigcirc
	$\frac{8}{4}$	－
		－

25 or $50 \mu \mathrm{~A}$, the behaviour observed under such conditions is not be due to a temperature effect. This was apparent from the fact that the observed R_{E} value for the other standard, propionate ion, was 1.25 and the simulated value is the same when Gly was used as the internal standard. Since such a situation was not found in the BDB-Lys system, the nature of the BDB ethanolamine system is not properly reflected by the simulation.

Separability assessment

Using the evaluated constants, the separability of the amino acids can be assessed by the use of the SIPS program and the results can be compared with those from experiments. The order of appearance and the separability of samples are determined by the magnitude of the mobilities and the differences between them in the transient mixed zone. They are a complicated function of the m_{0} and $\mathrm{p} K_{\mathrm{a}}$ of the samples, the selected buffer and pH_{L}, the pH of the injected mixture, etc. Therefore, strictly speaking, a discussion of the order of appearance and the separability should take account of these factors besides steady state information. However, for such complicated sample systems as treated in this paper, the analysis of the mixed zones is a difficult problem. At present, even for a three-component system, no practical elucidation of the separation process has been reported, although two-component systems (monovalent ions) have been relatively well analyzed ${ }^{14,15}$. Although the SIPS program has a routine which is applicable to general multivalent ions, at present its utility is limited to two-component systems (the details will be published in due course). As a first approximation, the difference between the effective mobilities of samples at the steady state can be a good measure of their separation, since the pH of the mixed zone lies in the middle of the pH values of the adjacent separated zones and the effective mobilities in the mixed zone are not very different from those in the steady state.

Table IX summarizes the differences between the simulated effective mobilities of the twenty-two amino acids at the steady state when amediol was used as the pH buffer. The four pH conditions $\left(\mathrm{pH}_{\mathrm{L}}=8.6,9.0,9.4\right.$ and 9.7) were the same as those used by Kopwillem and Lundlin ${ }^{8}$. In the simulation, the leading ion concentration was $10 \mathrm{~m} M$. Table X also summarizes the differences between the simulated effective mobilities in another conveniently used leading electrolyte, 10 mM hydrochloric acid ethanolamine ($\mathrm{pH}_{\mathrm{L}}-9.0,9.2,9.4$ and 9.6). Apparently, from these tables, the differences for adjacent samples are very small and sometimes zero, suggesting that the separation of all of them is not practical as long as a pH effect on the effective mobility is utilized. In comparison with Table IX and X, amediol may be superior in separability.

Kopwillem and Lundin ${ }^{8}$ studied the pH dependence of the separation of seventeen amino acids, using thermometric and UV detectors. The samples (each $2.5-10 \mathrm{nmol}$) were Ala, Asn, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Met, Phe, Ser, Thr, Trp, Tyr and Val. They found that fourteen amino acids can be separated at $\mathrm{pH}_{\mathrm{L}}=8.6$ buffered by amediol. The leading ion used was chloride ($5-10 \mathrm{mM}$). A capillary tube ($81 \mathrm{~cm} \times 0.5 \mathrm{~mm}$ I.D.) was used and a single experiment took ca. 70 min (driving current $=50 \mu \mathrm{~A}$).

At $\mathrm{pH}_{\mathrm{L}}=8.6$ (amediol buffer) the observed order of appearance of the samples in their experiment, the simulated R_{E} values and the effective mobilities, \bar{m}, of the
amino acids were $\operatorname{Asp}\left(R_{E}=2.60, \bar{m}=28.8 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$, Glu (2.85, 26.2), Cys (3.25, 23.0), Asn (4.32, 17.3), [Ser $(4.83,15.5)$, Thr $(4.89,15.3)]$, Gln $(5.31,14.1)$, Mct $(5.65,13.2)$, Tyr $(6.01,12.4)$, [His $(5.78,12.9)$, Phe $(5.79,12.9)]$, Gly $(6.23,12.0)$, Trp (7.67, 9.74), Val (7.57, 9.87), Ala (7.59, 9.84), [Leu (8.18, 9.12), Ile (8.33, 8.96)] and β-Ala $(10.76,6.95)$. The pairs of samples in square brackets could not be separated when the injected sample amounts were 2.5 and 5 nmol of each. It was also reported that the pairs [Ser, Thr], [Tyr, His], [His, Phe], [Ala, Leu] and [Ile, Leu] could not be separated when the sample amounts were 7.5 and 10 nmol of each. For these pairs the differences between the simulated effective mobilities of the individual components are $0.2 \cdot 10^{-5}, 0.5 \cdot 10^{-5}, 0.0 \cdot 10^{-5}, 0.72 \cdot 10^{-5}$ and $0.16 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ respectively. The reported order of appearance is in approximate agreement with both the increasing order of R_{E} values and the decreasing order of effective mobility, except for Tyr, His, Phe, Trp and Val. The behaviour of the last compounds is contradictory to the estimation not only from the simulation but also to independently observed R_{E} values with experimental errors of ca. 0.05^{\star} (5.92, DL-Tyr; 5.70, l-Phe; 5.64, l-His; 7.59, dl-Trp and 7.47, dl-Val). However, UV observation supported the first appearance of Tyr when the separation of Tyr, Phe and His, for example, was attempted at $\mathrm{pH}_{\mathrm{L}}=8.64$ (amediol buffer). These facts can not be explained as the result of errors in the observed R_{E} values or the evaluated constants. Most probably, they were caused by the enforced phenomena**.

A tentative simulation of the separation process for the two-component system gave evidence which supported this estimation. When a $10 \mathrm{~m} M$ hydrochloric acid solution buffered by amediol $\left(\mathrm{pH}_{\mathrm{L}}=8.6\right)$ was the leading electrolyte and the pH of the injected $1: 1$ mixture was 9 (amediol buffer), for example, the simulated pH of the transient mixed zone was 9.255 and the effective mobilities of His and Tyr in the zone were $12.39 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$. The mobility of Tyr was larger than that of His, contrary to the steady state, suggesting that enforced migration is occurring. The time needed for the resolution, t_{res}, of $10-\mathrm{nmol}$ samples was 2060 s , when the migration current was $50 \mu \mathrm{~A}$. The simulated $t_{\text {res }}$ for the other inseparable pairs (10 nmol of each) were 2814 (Ser, Thr), 3344 (His, he), 7047 (Ala, Leu) and 2124 s (Ile, Leu). When the other samples coexist, it was confirmed experimentally that the observed $t_{\text {res }}$ is larger than the simulated value for a two-component system. The $t_{\text {res }}$ values for the amino acids in the electropherogram of Fig. 1 were simulated. The $\mathrm{pH}_{\mathbf{L}}$ was 8.64 , the pH of the mixture was 9 (amediol buffer respectively) and the migration current was $50 \mu \mathrm{~A}$. The estimated values were 530 (Glu, Cys), 206 (Cys, Asn), 348 (Asn, Ser), 1055 (Ser, Gln), 745 (Gln, Phe), 228 (Phe, Gly) and 280 s (Gly, Ala).

At $\mathrm{pH}_{\mathrm{L}}=9.4$ (amediol buffer), the order of appearance reported was Asp (R_{E} $=2.18, \bar{m}=34.7$), [Glu (2.30, 33.0), Cys (2.28, 33.3)], Asn (3.10, 24.5), Ser (3.25,

[^4]23.3), $\operatorname{Thr}(3.36,22.6)$, $\operatorname{Gln}(3.62,20.9), \operatorname{Tyr}(3.71,20.4)$, $\operatorname{Met}(3.75,20.2)$, His (3.85, 19.7), Phe (3.91, 19.4), Gly $(3.84,19.8)$, [Trp $(4.78,15.9)$, Val $(4.64,16.4)]$, Ala (4.56, $16.6)$, [Ile $(5.03,15.1)$, Leu $(4.97,15.3)]$ and β-Ala $(5.97,12.7)$. The samples in square brackets could not be separated when the injected amounts were 2.5 nmol of each. When the sample amounts were 10 nmol , the pairs [Glu, Cys], [Tyr, Met], [His, Phe], [Trp, Val], [Val, Ala] and [Leu, Ile] could not be separated. The differences between the simulated effective mobilities are $0.3 \cdot 10^{-5}, 0.2 \cdot 10^{-5}, 0.3 \cdot 10^{-5}, 0.5 \cdot 10^{-5}, 0.2 \cdot 10^{-5}$ and $0.2 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ respectively. A discrepancy between the reported order of appearance and the order of R_{E} values was found for several samples. Similarly to the preceding case $\left(\mathrm{pH}_{\mathrm{L}}=8.6\right)$, some of these could be attibuted to enforced phenomena.

Comparing the observed separations of the amino acids in the electrolyte systems of $\mathrm{pH}_{\mathrm{L}}=8.6,9.0$ and 9.4^{8} and the differences in the simulated mobilities, it was found that when the difference in the simulated effective mobilities of the samples were less than ca. $1 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ they could not be separated. The sample amounts were 10 nmol or less and the separating tube used was $c a .80 \mathrm{~cm} \times 0.5 \mathrm{~mm}$ I.D. ${ }^{8}$.

At $\mathrm{pH}_{\mathrm{L}}=9.7$, several exceptions to the above mentioned rule were found for the pairs Thr, Tyr, (mobility difference $=1.2 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$), Gly, His (1.5), Gly, Phe (2.1) and Ala, Trp (1.5). All of these pairs have not been separated. By simulation of the separation process, when 5 mM hydrochloric acid solution buffered by amediol $\left(\mathrm{pH}_{\mathrm{L}}=9.7\right)$ was the leading electrolyte and the pH of the injected $1: 1$ mixture was 9, the $t_{\text {res }}$ (s) were estimated as 2518 (Thr, Tyr), 3213 (Gly, His), 1916 (Gly, Phe) and 1618 (Ala, Trp).

When the length of the separation tube, l, is less than 80 cm , the threshold value of the difference in effective mobility can be simply estimated as ($80 / l$) $\cdot 10^{-5} \mathrm{~cm}^{2}$ $\mathrm{V}^{-1} \mathrm{~s}^{-1}$.

As previously concluded experimentally ${ }^{1}$, eight to ten amino acids can be separated simultaneously in a single experiment, which is in good agreement with the estimation from the simulated mobility differences. It should be noted that, in some cases, samples having the same effective mobility at the steady state could be separated, and samples with different effective mobilities at the steady state could not be separated ${ }^{14,15}$. In the separation of amino acids, a similar situation can be found in Table IX. However, the separation of amino acids for which the effective mobilities and R_{E} values are almost the same is not practical. Even when separated, the dynamic range of the separable amount may be small and the separation process may be time-consuming.

So long as only the amino acids are treated, the separability of isotachophoresis using the pH effect on the effective mobility is not competitive with ion-exchange chromatography. To improve this situation, use of Schiff base formation with propanal may be effective for several amino acids ${ }^{1}$. For the separation of mixtures of amino acids and other anionic samples, however, isotachophoresis can be a powerful technique. Especially by utilizing the SIPS program ${ }^{5}$, the separability can be assessed and the optimum separation conditions can be estimated conveniently. An example will be found in the succeeding paper on several oligo-peptides ${ }^{16}$.

REFERENCES

1 F. M. Everaerts, J. L. Beckers and Th. P. E. M. Verheggen, Isotachophoresis, Elsevier, Amsterdam, 1976.

2 T. Hirokawa and Y. Kiso, J. Chromatogr.. 242 (1982) 227.
3 T. Hirokawa and Y. Kiso, J. Chromatogr., 257 (1983) 197.
4 T. Hirokawa, H. Takemi, Y. Kiso, R. Takiyama, M. Morio, K. Fujii and H. Kikuchi, J. Chromatogr., 305 (1984) 429.
5 T. Hirokawa and Y. Kiso, Shimadzu Kagaku Kikai News, 25 (1984) 24.
6 T. Hirokawa, M. Nishino and Y. Kiso, J. Chromatogr., 252 (1982) 49.
7 T. Hirokawa, S. Kobayashi and Y. Kiso, J. Chromatogr., 318 (1985) 195.
8 A. Kopwillem and H. Lundin, LKB Application Note, LKB, September, 1974.
9 R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London, 1959.
10 Landolt-Börnstein, Zahlenwerte und Funktionen, Vol. II, Part 7, Springer, Berlin, 1960.
11 C. Long (Editor), Biochemists' Handbook, Spon, London, 1961.
12 L. G. Sillen and A. E. Martell (Editors), Stability Constants of Metal-Ion Complexes, Spccial Publication No. 17, The Chemical Society, London, 1964.
13 Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 52nd ed., 1971-1972.
14 F. E. P. Mikkers, F. M. Everaerts and J. A. F. Peek, J. Chromatogr., 168 (1979) 293.
15 F. E. P. Mikkers, F. M. Everaerts and J. A. F. Peek, J. Chromatogr., 168 (1979) 317.
16 T. Hirokawa, T. Gojo and Y. Kiso, J. Chromatogr., in press.

[^0]: * Present Address: Division of Research and Development. Matsunaga Kagaku Kogyo Co., 92 Mino-oki. Fukuyama 721 (Japan).

[^1]: * According to our simulation, when a leading electrolyte of 10 mM potassium hydroxide buffered by formic acid (pH of leading electrolyte, $\mathrm{pH}_{\mathrm{L}}=3.5$) is used, model cations of $m_{0}>c a .45 \cdot 10^{5}\left(\mathrm{p} K_{\mathrm{a}}\right.$ >6) can migrate isotachophoretically. For the others, H^{+}migrates instead. A neutral amino acid β-Ala, for which the $\mathrm{p} K_{1}$ is the largest of those presently treated, the isotachophoretically steady state is not achieved when formic acid is used as the buffer. When glutamic acid is used as the buffer, the limiting pH for the analysis of β-Ala is $c a .4$.

[^2]: * Obtained isotachophoretically; other constants were taken from refs. 9-13.

[^3]: * The BDB ions are divalent under the conditions used in ref. 1 and the effective mobility is almost the same as with HCO_{3}^{-}. Therefore the zone of HCO_{3}^{-}cannot be distinguished from that of BDB by a conductometric detector.

[^4]: * The R_{E} values could be measured repeatedly within an error of $c a . \pm 0.05 R_{E}$ units for the completely separable sample combinations when the internal standard was selected properly. However, we found that the R_{E} value of some samples, e.g., Tyr, varied over a greater range according to the selected combination of the samples, in spite of no mixed zone formation (usually this means that an isotachophoretic steady state is being achieved). The reason for this small but significant fluctuation is not yet known.
 *ᄎ In isotachophoresis the order of appearance of samples usually agrees with the decreasing effective mobilities. When this is not valid in relation to the pH of a sample zone and the preceding zone, it is called an enforced isotachophoretic system (see also ref. 1).

